
Problem 1. Number 12 can be written as a sum of an integer and its smallest divisor greater than 
1 in two different ways: 12 = 10 + 2 = 9 + 3. Find the smallest possible integer that can be
represented as a sum of an integer and its smallest divisor greater than 1 in four different ways.

Solution. An integer n’s smallest divisor d larger than 1 is its smallest prime divisor (if the
smallest divisor were composite, it would have a prime divisor smaller than it, contradiction).
Also, because n is a multiple of d, d is also a divisor of n + d. So, we are looking for a number

with at least four distinct prime divisors, and the smallest such number is 210 = 2 · 3 · 5 · 7. It’s
easy to verify that 210 can indeed be represented as this sum in four ways: 208 + 2, 207 + 3,
205 + 5, and 203 + 7. So 210 is the smallest possible such integer.

Problem 2. Prove that for any positive integer n the following identity holds:

1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ n · (n + 1) · (n + 2) =
n(n + 1)(n + 2)(n + 3)

4
.

Solution. We proceed by induction. It is clear that this holds for n = 1; suppose it holds for
n = k. Then

1 · 2 · 3 + 2 · 3 · 4 + · · ·+ k · (k + 1) · (k + 2) + (k + 1) · (k + 2) · (k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+ (k + 1)(k + 2)(k + 3)

=
(k + 1)(k + 2)(k + 3)(k + 4)

4

so the identity also holds for k + 1. Thus, the identity holds for all positive integers n.

Problem 3. The fraction 3 4 is written on the board. Every minute, Fanny chooses two
integer numbers. The first number which is always between 80 and 100 (inclusive) is added to
the numerator, while the second number between 100 and 120 (also inclusive) is added to the
denominator. If at any point the numerator and denominator have a common factor, it can be
cancelled. Can Fanny eventually get 2

3?

Solution. No. Let n be the number Fanny adds to the numerator and d the number she adds to
the denominator. Notice that n

d ≥
2
3 always. In general, given some fraction p

q > 2
3 , we see that

3p > 2q and 3n ≥ 2d, so 3(p + n) > 2(q + d) and p+n
q+d > 2

3 . In other words, if we start with a

fraction greater than 2
3 and repeatedly add these numbers to the numerator and denominator,

we will still end up with a fraction greater than 2
3 . Because 3

4 > 2
3 , then, Fanny will never get

2
3 .

Problem 4. For which values of parameter r does the equation

(r − 3)x2 − 2(r − 2)x + r = 0

have 2 distinct real roots both greater than −1? Justify your answer.

Solution. Using the quadratic formula, the roots of this quadratic are

2(r − 2)±
√

4(r − 2)2 − 4r(r − 3)

2(r − 3)
=

r − 2±
√
−r + 4

r − 3
.
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For the roots to be distinct and real, we must have r < 4. For them to be greater than −1, we
want

r − 2±
√
−r + 4

r − 3
> −1

r − 2−
√
−r + 4 > −r + 3

2r − 5 >
√
−r + 4

4r2 − 20r + 25 > −r + 4

4r2 − 19r + 21 > 0

(4r − 7)(r − 3) > 0

which occurs either when r > 3, r > 7/4 or r < 3, r < 7/4. So this equation has 2 distinct real

roots both greater than −1 when r ∈ (−∞, 7/4) ∪ (3, 4) .

Problem 5. Eleven white chairs are placed around a circular table. They are numbered 1 
through 11 in increasing order. In how many ways can Danielle paint some (or none) of the
chairs red so that no three consecutive chairs are red?

Solution. We casework on the number of red chairs. Call a painting of the chairs good if it does
not contain three consecutive chairs (and bad if it does).

If there are no red chairs, we automatically fulfill the conditions, for a total of 1 way.
If there is 1 red chair, it can be anywhere, for 11 ways.
If there are 2, they can also be anywhere, for

(
11
2

)
= 55 ways.

If there are 3, there are
(
11
3

)
ways to choose chairs to paint, but 11 of those ways will have 3

consecutive chairs, so there are
(
11
3

)
− 11 = 154 good ways to paint them.

If there are 4, there are
(
11
4

)
ways to choose chairs to paint. However, we could have 4

consecutive reds or groups of 3 and 1 red chair (separated by at least one white chair). The
former can occur in 11 ways and the latter in 11 · 6 ways (after choosing the group of 3 chairs,
the lone red chair can go in one of the 6 spots not adjacent to any of the other red chairs). So
there are

(
11
4

)
− 77 = 253 good ways to paint 4 red chairs.

If there are 5, there are
(
11
5

)
ways to choose chairs to paint. Then there are 3 types of bad

ways, based on the largest group of consecutive red chairs (3, 4, or 5). If the largest group
of consecutive red chairs consists of 3 chairs, then there are 11 · 15 bad ways to paint: 11 to
choose the group of 3 chairs and

(
6
2

)
= 15 ways to choose where the remaining two chairs go.

Likewise, if the largest group of red chairs consists of 4 chairs, there are 11 · 5 ways to paint,
and if the largest group consists of 5 red chairs, there are 11 ways to paint them. So there are(
11
5

)
− 11 · 21 = 231 good ways to paint.

If there are 6 red chairs, there are
(
11
6

)
ways to choose chairs to paint. Again, we count bad

ways by doing casework on the largest group of consecutive red chairs. If the largest group of
red chairs consists of 3 chairs, there are 11 ·20 bad ways: 11 to choose tho group of 3 chairs and(
6
3

)
= 20 ways to choose where the remaining three chairs go. However, this overcounts when

we have 2 groups of 3 chairs; there are 11 · 2 ways to paint chairs this way (11 locations for the
first group, 4 for the second, and halved because the two groups are interchangeable). So in the
3-chair group case, there are 11 · 18 bad ways total. If the largest group has 4 chairs, there are
11 ·

(
5
2

)
bad ways; if the largest group as 5, there are 11 · 4 bad ways; and if the largest group

has 6, there are 11 bad ways. So there are
(
11
5

)
− 11 · 33 = 99 good ways to paint.

If there are 7 red chairs, there is exactly one way to paint the chairs up to rotation (3 pairs
and one lone chair), so there are 11 good ways to paint.

If there are 8 or more red chairs, 3 of them must always be consecutive (we would need at
least 12 chairs to have 4 pairs of 2 chairs).
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Thus, in total there are 1 + 11 + 55 + 154 + 253 + 231 + 99 + 11 good ways; this sums up to
815 ways total.

Problem 6. Prove that the product of 100 consecutive positive integers can never be an 
exact 100th power of an integer.

Solution. Suppose this were possible. Let the product be p and its 100th root be k. First, k
would have to be one of the 100 integers we are multiplying. Then we have two cases: either the
100 consecutive integers contain a multiple of 101, or not. Only the first case is possible: if they
contain no multiple of 101, because 101 is prime, by Fermat’s Little Theorem their product must
be 1 (mod 101). At the same time, their product is 100! (mod 101) but by Wilson’s Theorem,

that is −1 (mod 101), contradiction. So exactly one of the 100 integers is a multiple of 101.
Moreover, this integer must be k, since otherwise p would not be a multiple of 101. Let e be

the largest integer so that 101e|k with e ≥ 1; however, all the powers of 101 in p must come 
from k and 101100e|p, so 101100e|k also, contradiction.
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