
Solutions, by Vidur Jasuja

Problem 1. Firstly, the left hand side of the equation must be even, and so at least one of x, y, z is even.
Suppose without loss of generality x is even. Let x = 2x0. Then

4x2
0 + y2 + z2 = 4x0yz.

This means y2 + z2 is divisible by 4, meaning both y, z are even as well. Let y = 2y0, z = 2z0. This gives us
that

4x2
0 + 4y20 + 4z20 = 16x0y0z0,

or
x2
0 + y20 + z20 = 4x0y0z0.

Repeating this process again, it can be seen that all of x0, y0, z0 are even, and if 2x1 = x0, 2y1 = y0, 2z1 = z0,
then

x2
1 + y21 + z21 = 8x1y1z1.

In fact, this process can be repeated indefinitely, and so by the principle of infinite descent, no solutions can
exist.

Problem 2. By Vieta’s Formulas, x1 + x2 = −p, x1x2 = 1
2p2 . So,

x2
1 + x2

2 = (x1 + x2)
2 − 2x1x2 = p2 +

1

p2
.

Now, repeating this,

x4
1 + x4

2 = (x2
1 + x2

2)− 2(x1x2)
2 = p4 + 2 +

1

p4
− 1

2p4
= p4 + 2 +

1

2p4
.

By AM-GM,

p4 +
1

2p4
≥ 2

√
1

2
=

√
2,

so then the answer is
√
2 + 2. which by setting p4 and 1

2p4 equal is achieved at p = 2−
1
8 .

Problem 3. Firstly, suppose lines AR and BT intersect at X, and lines DR and CT intersect at Y. Observe
that XRY T is a parallelogram due to our parallel conditions. The key claim is that △ABX is similar to
△CY D. It is clear that △AXT is similar to △TY D. So,

AX

Y T
=

TX

DY
.

Analogously,
XR

Y C
=

BX

RY
.

Multiplying these two similarities, and also observing that Y T = XR and TX = RY ,

AX

CY
=

BX

DY
.

Now, since ̸ AXB = ̸ TXR = ̸ TY R = ̸ CY D, by SAS similarity, the claim is proven. Therefore, since
̸ BAX = ̸ Y CD and AX ∥ Y C, it must be that AB ∥ CD, as desired.

Problem 4. Consider the sum of the reciprocals of the numbers on the board. The key claim is that this
quantity is invariant. Indeed, if a and b are replaced by ab

a+b , note that

1

a
+

1

b
=

a+ b

ab
=

1
ab
a+b

.
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Thus, this quantity is invariant as desired. Therefore, the final number on the board has reciprocal

1 +
1

2
+

1

4
+ · · ·+ 1

512
=

512 + 256 + 128 + · · ·+ 1

512
=

1023

512
.

Therefore, the final number on the board will always be 512
1023 , regardless of the order of operations.

Problem 5. Firstly, if there are an odd number of negative numbers among the xi’s, then their product is
negative, and the conditions are all satisfied. Furthermore, if one of them is zero, the problem condition is
also satisfied. So, now consider the case where 4 of the x′

is are positive, and 2 are negative; this is symmetric
with the case where 2 are positive and 4 are negative.

Suppose that x1, x2, x3, x4 are positive, and x5, x6 negative. Let y5 = −x5, y6 = −x6. Then x1+x2+x3+x4 =
y5 + y6 = c, for some constant c. Now, as a corollary of the AM-GM inequality (or Cauchy-Schwarz, or
Jensen’s), note that

x2
1 + x2

2 + x2
3 + x2

4 ≥ (x1 + x2 + x3 + x4)
2

4
=

c2

4
,

and

y25 + y26 ≥ (y5 + y6)
2

2
=

c2

2
.

Therefore, summing these two inequalities,

6 ≥ 3c2

4
→ 2

√
2 ≥ c.

Now apply AM-GM.

x1 + x2 + x3 + x4

4
≥ 4

√
x1x2x3x4 →

√
2

2
≥ 4

√
x1x2x3x4 → 1

4
≥ x1x2x3x4,

and
y5 + y6

2
≥ √

y5y6 →
√
2 ≥ √

y5y6 → 2 ≥ y5y6 = x5x6.

Therefore,

x1x2x3x4x5x6 ≤ 1

4
· 2 =

1

2
,

as desired.

Problem 6. Suppose for the sake of contradiction V and W are airports such that they are 65 or more
connections away. Consider vertex V . For a given positive integer i, let Si denote the set of airports whose
shortest travel to V involves exactly i flights. Now, note the following observations:

1. S1 must contain at least 100 airports.

2. Each of S1, S3, . . . , S66 must contain at least one airport.

3. An airport in Sj can only be connected to airports in Sj−1, Sj , Sj+1. Indeed, if this airport is connected
to an airport in Sk for k ≤ j − 2, then this airport would require less than j flights to get to V , a
contradiction. If k ≥ j +2, then that airport would require at most j +1 < k connections to get to V ,
a contradiction.

Now, combine these observations. Consider an airport in Si; it is connected to at least 100 airports, and all
of those must be in Si−1, Si, Si+1. So, |Si−1|+ |Si|+ |Si+1| ≥ 101. Now,

S1 + (S2 + S3 + S4) + (S5 + S6 + S7) + · · · (S62 + S63 + S64) ≥ 100 + 21 · 101 = 2221.

Therefore, there are at least 2222 airports among V, S1, S2, S3, . . . , S64. This is evidently a contradiction;
there are only 2016 airports. Therefore, a flight between any two airports must take at most 65 connections.
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Solution 2. In a similar way, suppose there exist two airports V0 and V66 that require sixty-five connections.
Let the airports on the shortest path between these two be V1, V2, V3, . . . , V65. Let Sk denote the set of V3k

and its neighbors. Then very similarly as before, S0, S1, . . . , S22 are disjoint, and each contain at least 101
airports. This means there are at least 23 · 101 = 2323 airports, a contradiction. In fact, 20 · 101 is already
greater than 2016, so we could reduce the number of connections to 56 instead of 65.
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