Solutions, by Vidur Jasuja

Problem 1. Firstly, the left hand side of the equation must be even, and so at least one of x, y, z is even. Suppose without loss of generality x is even. Let $x = 2x_0$. Then

$$4x_0^2 + y^2 + z^2 = 4x_0yz.$$

This means $y^2 + z^2$ is divisible by 4, meaning both y, z are even as well. Let $y = 2y_0, z = 2z_0$. This gives us that

$$4x_0^2 + 4y_0^2 + 4z_0^2 = 16x_0y_0z_0,$$

or

$$x_0^2 + y_0^2 + z_0^2 = 4x_0y_0z_0$$

Repeating this process again, it can be seen that all of x_0, y_0, z_0 are even, and if $2x_1 = x_0, 2y_1 = y_0, 2z_1 = z_0$, then

$$x_1^2 + y_1^2 + z_1^2 = 8x_1y_1z_1$$

In fact, this process can be repeated indefinitely, and so by the principle of infinite descent, no solutions can exist.

Problem 2. By Vieta's Formulas, $x_1 + x_2 = -p, x_1x_2 = \frac{1}{2p^2}$. So,

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = p^2 + \frac{1}{p^2}.$$

Now, repeating this,

$$x_1^4 + x_2^4 = (x_1^2 + x_2^2) - 2(x_1 x_2)^2 = p^4 + 2 + \frac{1}{p^4} - \frac{1}{2p^4} = p^4 + 2 + \frac{1}{2p^4}.$$

By AM-GM,

$$p^4 + \frac{1}{2p^4} \ge 2\sqrt{\frac{1}{2}} = \sqrt{2},$$

so then the answer is $\sqrt{2} + 2$. which by setting p^4 and $\frac{1}{2p^4}$ equal is achieved at $p = 2^{-\frac{1}{8}}$.

Problem 3. Firstly, suppose lines AR and BT intersect at X, and lines DR and CT intersect at Y. Observe that XRYT is a parallelogram due to our parallel conditions. The key claim is that $\triangle ABX$ is similar to $\triangle CYD$. It is clear that $\triangle AXT$ is similar to $\triangle TYD$. So,

$$\frac{AX}{YT} = \frac{TX}{DY}.$$
$$\frac{XR}{YC} = \frac{BX}{RY}.$$

Analogously,

Multiplying these two similarities, and also observing that YT = XR and TX = RY,

$$\frac{AX}{CY} = \frac{BX}{DY}$$

Now, since $\angle AXB = \angle TXR = \angle TYR = \angle CYD$, by SAS similarity, the claim is proven. Therefore, since $\angle BAX = \angle YCD$ and $AX \parallel YC$, it must be that $AB \parallel CD$, as desired.

Problem 4. Consider the sum of the reciprocals of the numbers on the board. The key claim is that this quantity is invariant. Indeed, if a and b are replaced by $\frac{ab}{a+b}$, note that

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} = \frac{1}{\frac{ab}{a+b}}$$

Thus, this quantity is invariant as desired. Therefore, the final number on the board has reciprocal

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{512} = \frac{512 + 256 + 128 + \dots + 1}{512} = \frac{1023}{512}$$

Therefore, the final number on the board will always be $\frac{512}{1023}$, regardless of the order of operations.

Problem 5. Firstly, if there are an odd number of negative numbers among the x_i 's, then their product is negative, and the conditions are all satisfied. Furthermore, if one of them is zero, the problem condition is also satisfied. So, now consider the case where 4 of the x'_i s are positive, and 2 are negative; this is symmetric with the case where 2 are positive and 4 are negative.

Suppose that x_1, x_2, x_3, x_4 are positive, and x_5, x_6 negative. Let $y_5 = -x_5, y_6 = -x_6$. Then $x_1 + x_2 + x_3 + x_4 = y_5 + y_6 = c$, for some constant c. Now, as a corollary of the AM-GM inequality (or Cauchy-Schwarz, or Jensen's), note that

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 \ge \frac{(x_1 + x_2 + x_3 + x_4)^2}{4} = \frac{c^2}{4},$$

and

$$y_5^2 + y_6^2 \ge \frac{(y_5 + y_6)^2}{2} = \frac{c^2}{2}.$$

Therefore, summing these two inequalities,

$$6 \ge \frac{3c^2}{4} \to 2\sqrt{2} \ge c.$$

Now apply AM-GM.

$$\frac{x_1 + x_2 + x_3 + x_4}{4} \ge \sqrt[4]{x_1 x_2 x_3 x_4} \to \frac{\sqrt{2}}{2} \ge \sqrt[4]{x_1 x_2 x_3 x_4} \to \frac{1}{4} \ge x_1 x_2 x_3 x_4,$$

and

$$\frac{y_5 + y_6}{2} \ge \sqrt{y_5 y_6} \to \sqrt{2} \ge \sqrt{y_5 y_6} \to 2 \ge y_5 y_6 = x_5 x_6$$

Therefore,

$$x_1 x_2 x_3 x_4 x_5 x_6 \le \frac{1}{4} \cdot 2 = \frac{1}{2},$$

as desired.

Problem 6. Suppose for the sake of contradiction V and W are airports such that they are 65 or more connections away. Consider vertex V. For a given positive integer i, let S_i denote the set of airports whose shortest travel to V involves exactly i flights. Now, note the following observations:

- 1. S_1 must contain at least 100 airports.
- 2. Each of S_1, S_3, \ldots, S_{66} must contain at least one airport.
- 3. An airport in S_j can only be connected to airports in S_{j-1}, S_j, S_{j+1} . Indeed, if this airport is connected to an airport in S_k for $k \leq j-2$, then this airport would require less than j flights to get to V, a contradiction. If $k \geq j+2$, then that airport would require at most j+1 < k connections to get to V, a contradiction.

Now, combine these observations. Consider an airport in S_i ; it is connected to at least 100 airports, and all of those must be in S_{i-1}, S_i, S_{i+1} . So, $|S_{i-1}| + |S_i| + |S_{i+1}| \ge 101$. Now,

$$S_1 + (S_2 + S_3 + S_4) + (S_5 + S_6 + S_7) + \dots + (S_{62} + S_{63} + S_{64}) \ge 100 + 21 \cdot 101 = 2221$$

Therefore, there are at least 2222 airports among $V, S_1, S_2, S_3, \ldots, S_{64}$. This is evidently a contradiction; there are only 2016 airports. Therefore, a flight between any two airports must take at most 65 connections.

Solution 2. In a similar way, suppose there exist two airports V_0 and V_{66} that require sixty-five connections. Let the airports on the shortest path between these two be $V_1, V_2, V_3, \ldots, V_{65}$. Let S_k denote the set of V_{3k} and its neighbors. Then very similarly as before, S_0, S_1, \ldots, S_{22} are disjoint, and each contain at least 101 airports. This means there are at least $23 \cdot 101 = 2323$ airports, a contradiction. In fact, $20 \cdot 101$ is already greater than 2016, so we could reduce the number of connections to 56 instead of 65.